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Abstract. Globally, the healthcare industry is a critical sector that directly 
influences human life. Ensuring the confidentiality, integrity, and authenticity of 
health data is paramount to protecting individual privacy. Although the Advanced 
Encryption Standard (AES) is a widely recognized encryption technique, it has 
inherent vulnerabilities, particularly in secure key sharing. Compromises in these 
channels can undermine the overall strength of AES encryption. In response to the 
increasing threat of data breaches, numerous cryptographic algorithms have been 
developed to protect digital health records and communication. These include 
symmetric algorithms, such as the Advanced Encryption Standard (AES) and Data 
Encryption Standard (DES), and asymmetric algorithms, such as Rivest-Shamir-
Adleman (RSA) and Elliptic Curve Cryptography (ECC). This paper presents an 
enhanced AES algorithm integrated with an Elliptic Curve Diffie-Hellman (ECDH), 
which strengthens key management by offering secure key generation and 
additional cryptographic layers. The research employed an experimental design 
utilizing PyCryptodome for implementation, alongside tools such as NumPy, psutil, 
and Matplotlib for performance testing and analysis. Comparative evaluations of 
the enhanced AES-ECDH and standard AES algorithms were conducted in terms 
of execution time, CPU usage, memory consumption, and security analysis. 
Dummy datasets were used to uphold ethical standards, ensuring that sensitive 
information was not compromised during testing. 
 
The findings revealed that while the enhanced AES-ECDH algorithm significantly 
improves security by offering features such as forward secrecy and heightened 
resistance to various attacks, it comes at the expense of increased resource 
consumption. Despite this trade-off, the enhanced algorithm is highly suitable for 
scenarios that prioritize data protection over system performance, particularly in 
healthcare environments. 
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INTRODUCTION 
 
The health industry plays a vital role in ensuring the security of data in different sectors. 
With the widespread digitalization of medical services and increasing reliance on 
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electronic health records (EHRs), ensuring the secure exchange of sensitive health 
information among healthcare providers, patients, and authorized entities has become 
essential. Protecting the confidentiality, integrity, and authenticity of heath data is critical 
not only to uphold patient trust but also to comply with international data privacy standards 
like the Health Insurance Portability and Accountability Act (HIPAA) in the United States 
(Computer Security Division, Information Technology Laboratory, National Institute of 
Standards and Technology, U.S. Department of Commerce, 2001). 
 

In response to the rising threat of data breaches, several cryptographic algorithms have 
been developed to safeguard digital health records and communication. This includes 
symmetric algorithms like Advanced Encryption Standard (AES) and Data Encryption 
Standard (DES) and asymmetric algorithms like RSA and Elliptic Curve Cryptography 
(ECC). The choice of algorithm played an important role in balancing security and 
efficiency. An algorithm such as the Advanced Encryption Standard (AES) was preferred 
to secure data transmission. The AES algorithm was developed by two Belgian 
cryptographers, Vincent Rijmen and Joan Daemen, through a process initiated by NIST 
to replace the outdated Data Encryption Standard (DES) and to meet the growing security 
needs of the 21st century (Brahmaiah et al., 2023). Unlike DES, AES operates on a 
substitution-permutation network design principle, enhancing its efficiency in both 
software and hardware applications (Al-Khafaji & Abdul, 2022). It was the best algorithm 
recognized by NIST and approved by NSA for protection of the top-secret information and 
national security systems (National Institute of Standards and Technology, 2001). 
 
However, given the ever-growing computational power available to attackers, 
continuously enhancing AES security features is imperative. In addition, AES's key 
sharing of AES depends on a secure channel; if that channel is compromised, the security 
of the information is compromised (Bhowmika et al., 2022). Therefore, it is necessary to 
secure the key to the AES algorithm. To address these concerns, this research enhanced 
AES cryptography by integrating Elliptic Curve Diffie-Hellman (ECDH) Key Exchange and 
additional round keys in both the pre-processing and post-processing stages.  
 
To overcome these limitations, hybrid encryption techniques are becoming popular where 
AES is combined with Elliptic Curve Diffie-Hellman (ECDH) augmenting security because 
they enable secure key exchange even over insecure channels. ECDH offers forward 
secrecy and a very high level of security, even while keeping key sizes small compared 
to RSA, making ECDH an ideal candidate for health applications where performance 
meets security requirements. This study proposes an Enhanced AES cryptography 
algorithm that integrates ECDH for secure key generation and includes the use of 
additional round keys in both the pre-processing and post-processing phases to enhance 
resilience against advanced attacks. 
 
The performance of the proposed algorithm was evaluated on parameters such as 
execution time, CPU utilization, memory usage, and security, and compared to standard 
AES implementations. A rigorous security analysis was conducted to validate its 
efficiency and effectiveness, offering insights into the relative strengths and weaknesses 
of the enhanced algorithm and to guide future developments in cryptographic protocols 
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for healthcare data security. This integration addresses the pressing need for enhanced 
security measures on health-information exchange platforms. 
 
Literature Review 
 
Cryptography plays a vital role in protecting digital information and ensuring the 
confidentiality, integrity, and authenticity of data across different sectors such as 
healthcare, finance, and e-commerce. This is done by encrypting and decrypting data 
using algorithms and cryptographic keys to keep it secure from unauthorized access and 
to allow secure communication (Raj & Kaur, 2023). Over time, cryptographic techniques 
have evolved considerably with the contributions of the mathematics and computing 
sciences. The more widely used algorithms developed are those of the Advanced 
Encryption Standard (AES), Rivest-Shamir-Adleman (RSA), Data Encryption Standard 
(DES), and Elliptic Curve Cryptography (ECC), which have served well against various 
security paradigms depending on the area of application context (Akram, 2022). 
 
In the context of finance, however, encryption techniques are considerably useful, as they 
protect sensitive data, such as banking credentials, credit card numbers, and transaction 
history. RSA and ECC find prominent applications in secure online banking and digital 
signatures by providing high-level security using asymmetric encryption. Likewise, in the 
case of e-commerce, data encryption applying symmetric encryption methods, such as 
AES, provides a suitable and fast process for real-time transactions. SSL/TLS sits on top 
of previous methods and integrates them to provide an end-to-end secure channel for 
communication between clients and servers (Li, 2022). These real-world applications 
illustrate the versatility of cryptography and its critical role in fostering trust and reliability 
of digital services. 
 
In the healthcare domain, the secure exchange of electronic health records (EHRs) and 
personal health information (PHI) has become increasingly important, particularly with the 
shift toward digital and cloud-based health systems. Traditional cryptographic techniques, 
such as DES and RSA, have been implemented in early health information systems, but 
their limitations in terms of speed and computational efficiency have prompted the 
exploration of advanced methods. AES then became the standard for encrypting medical 
data due to its speed and resistance against brute-force attacks (Carlet, Jakobovic, & 
Picek, 2021). However, the need for secure key exchange mechanisms has led to the 
exploration of ECC and its variants, such as the Elliptic Curve Diffie-Hellman (ECDH), 
which offers strong security with smaller key sizes, ideal for resource-constrained 
healthcare environments. 
 
Hybrid encryption models that integrate symmetric and asymmetric techniques, such as 
AES with ECC or RSA, have gained popularity owing to their ability to combine the 
strengths of both methods. These hybrid approaches improve overall security by using 
asymmetric algorithms for key exchange and symmetric algorithms for data encryption. 
Studies by Negi, Shrestha, Borges, Sahana, & Das (2023), and Sharma, Kumar, & Gupta 
(2023) illustrates the effectiveness of hybrid techniques for data confidentiality and 
efficiency in health information systems. In addition, recent advancements, such as the 
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incorporation of ECDH into AES frameworks, have shown potential in minimizing 
computational load while ensuring robust protection, making them suitable for modern 
health IT infrastructures (Saepulrohman, Denih, Sukono, & Bon, 2020). 
 
Continual innovation in cryptographic techniques, reflected in the refinement of existing 
algorithms and creation of hybrid models, underscores the dynamic nature of the field. 
Despite these advances, gaps remain in optimizing encryption for specific domains such 
as healthcare, where low latency, lightweight processing, and high security are 
simultaneously required. This study addresses this gap by proposing an enhanced AES 
algorithm integrated with ECDH for improved key management and overall system 
performance, contributing to ongoing efforts to develop secure and efficient solutions for 
health information exchange. 
 
Conceptual Framework 
 
Figure 1 Paradigm of the Study outlined the theoretical constructs and relationships that 
guided the development of an enhanced AES Cryptography Algorithm through the 
implementation of additional keys (pre-processing and post-processing) and ECDH key 
generation integration. The enhanced algorithm, referred to as AES-ECDH, combined 
two fundamental cryptographic techniques to improve both security and performance. 
 

 
 

Figure 1. Paradigm of the Study 
 
The conceptual framework of this study outlines the flow from input through processing 
to output, focusing on the integration of ECDH and an enhanced AES algorithm. The input 
phase includes data input from text files of varying sizes, elliptic curve domain key 
parameters based on the P256 curve, and AES 256 using the Galois/Counter Mode 
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(GCM) with additional rounds of key processing. These inputs are crucial for testing the 
robustness and scalability of the encryption algorithms. 
 
This study involved several key activities in the process phase. The testing algorithm 
component included key generation using ECDH, measurement of encryption time, and 
decryption time. Performance evaluation assesses execution time in milliseconds, 
memory usage in megabytes, and CPU usage in percentage. In addition, a security 
assessment was conducted to analyze the security features and potential vulnerabilities 
of the encryption algorithm. 
 
The output phase delivers several critical results, including secure exchange of encrypted 
messages and ensuring data confidentiality and integrity. The performance evaluation 
results provide detailed metrics of the execution time, memory usage, and CPU usage of 
the enhanced AES algorithm. Finally, the security analysis report offers a comprehensive 
assessment of the strengths of the algorithm and the potential areas for improvement. 
This structured approach aims to demonstrate the practical performance and theoretical 
security of the proposed cryptographic solution, highlighting its importance for securing 
sensitive health information. 
 
 
METHOD 
 
Research Design 
 
The study used an experimental research design to evaluate the performance and 
efficiency of enhanced AES cryptography with integrated ECDH key generation and 
added key implementation for pre- and post-processing. Experimental research on 
cryptographic algorithms has played a crucial role in assessing security and performance, 
as observed in different studies. By systematically manipulating the variables and 
observing the outcomes, researchers have validated the functionality, efficiency, and 
security of cryptographic algorithms under various conditions. For instance, Johnson 
(2019) highlighted how controlled experiments help in understanding the practical 
performance and potential vulnerabilities of cryptographic methods. Similarly, Gupta, 
Singh, and Sharma (2021) emphasized that empirical testing could either support or 
challenge theoretical claims, contributing to the development of more robust 
cryptographic systems. Furthermore, Smith and Lee (2022) illustrated that experimental 
research provides valuable empirical evidence, ensuring that cryptographic algorithms 
meet security and efficiency standards in real-world applications. 
 
The experimental framework involved examining the underlying mathematical concept of 
the AES-ECDH algorithm and demonstrating its cryptographic function. An experimental 
group utilized the proposed algorithm and compared its performance with that of a 
standard AES algorithm. This method includes a systematic exploration and analysis of 
existing concepts, hypothesis formulation, and experimental concept testing to deepen 
understanding and generate insights.  
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Instrument 
 
To implement and evaluate the enhanced algorithm, Python Programming Language was 
utilized with PyCryptodome, a self-contained Python package of low-level cryptographic 
primitives that performs encryption and decryption operations and manages 
cryptographic keys. The development and testing phases were conducted using a range 
of specialized Python libraries.  
 
Figure 2 presents a list of libraries utilized to ensure the accuracy, efficiency, and security 
of the algorithm. 
 

 
 
Figure 2. Libraries Utilized for Implementing and Evaluating the Enhanced AES Algorithm 
 
To implement and evaluate the Enhanced AES Algorithm, a variety of Python libraries 
were utilized, each serving a specific purpose during the development process. The os 
and time modules are foundational in handling operating system-level tasks and timing 
functions, which are essential for evaluating performance metrics. The psutil library was 
instrumental in monitoring the system resource usage, such as CPU and memory, 
providing insights into the efficiency of the algorithm. 
 
Cryptographic operations were central to this implementation, with the pycryptodome 
library as the primary tool. It included the Crypto.Cipher module for AES encryption, 
Crypto.PublicKey for handling Elliptic Curve Cryptography (ECC), Crypto.Protocol.KDF 
for key derivation using the scrypt algorithm, and Crypto.Hash for hashing functionalities 
such as HMAC and SHA-256. These cryptographic modules collectively enhance the 
security aspects of the AES algorithm by incorporating elliptic curve key exchange and 
robust hashing mechanisms. 
 
For data manipulation and visualization, pandas were employed to manage and process 
datasets, whereas matplotlib and seaborn were used to create detailed plots and 
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visualizations that aid in analyzing the performance of the Enhanced AES Algorithm. 
Additionally, numpy is crucial for numerical computations, and scipy.stats is utilized for 
statistical analysis, specifically the entropy function, which measures the unpredictability 
and security of cryptographic keys. Finally, hashlib provided additional hashing functions, 
complementing cryptographic operations. 
 
Data Collection 
 
Generated random data with different file sizes were used to test the enhanced AES 
algorithm. Owing to the sensitive nature of healthcare data, most ethical considerations 
have been observed. Dummy data were used to mitigate risk during the testing phase. 
The execution of test cases involving key generation, data encryption, and data 
decryption was recorded. These results were used to measure the performance using 
metrics such as execution time, memory usage, CPU usage, and security. Additionally, a 
comparison of the performance with the standard AES algorithm under similar conditions 
was also conducted to highlight the strengths of the proposed algorithm. 
 
Figure 3 illustrates the interaction between AES and ECDH. The model demonstrates 
how the integration of ECDH enhances AES by providing secure key exchange along 
with the addition of initial and final round keys. 
 

 
 

Figure 3. Data Flow Diagram of Enhanced AES with ECDH Key Exchange 
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The data flow of the Enhanced AES algorithm with ECDH key exchange begins with the 
Key Generation and Exchange (ECDH) process. Initially, both parties (Party A and Party 
B) independently generated their private keys. Subsequently, they compute their 
corresponding public keys and exchange them securely. Using their private keys in 
conjunction with the exchanged public keys, both parties calculate a shared secret key, 
denoted by K=Ab=Ba, ensuring that the secret key is identical on both sides. The shared 
secret key forms the foundation of the subsequent encryption process. 
 
In the Enhanced AES Encryption phase, plaintext data are encrypted using the shared 
secret key derived from the ECDH key exchange. This shared key serves as the basis 
for generating additional round keys, which provides an added layer of security through 
an intricate key scheduling process. The encryption process begins by introducing these 
extra round keys before proceeding to the core AES algorithm. The enhanced AES 
algorithm operates in AES.MODE_GCM, incorporating 16 round keys in total: two 
additional round keys derived from the shared secret key and the standard 14 round keys 
of AES. 
 
The encryption sequence included several critical steps: an initial Add Round Key, 
SubBytes for nonlinear substitution, Shift Rows for cyclic shifting of rows, Mix Columns 
for column-wise mixing, and a final Add Round Key. By incorporating extra round keys 
before entering the standard AES rounds, the algorithm achieves heightened security.  
 
Test Environment 
 
The hardware configuration utilized for this study included a 12th Gen Intel(R) Core(TM) 
i5-1450H processor equipped with 16.0 GB of RAM. The software environment comprised 
a Windows 11 operating system and Python 3.12. 
 
Test Data 
 
For experimental analysis, different file sizes were used to evaluate the performance of 
the enhanced AES algorithm. The file sizes ranged from 500 KB to 5000 KB, specifically 
500, 1000, 2000, 3000, and 5000 KB. Each file size was subjected to ten separate tests 
to ensure a comprehensive assessment of the performance of the algorithm across 
varying data volumes. 
 
Figure 4 shows how random data are generated as inputs for the encryption and 
decryption operations. 
 

 
 

Figure 4. Function to Generate Random Data 
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The provided code illustrates the function used to generate random data for encryption 
and decryption operations. The function, named generate_data, takes a single parameter 
size_kb, representing the desired size of the generated data in kilobytes.  
 
The core of this function lies in the use of the os.urandom() method, which is responsible 
for producing random data. By multiplying the input parameter size_kb by 1024, the 
function converts the size from kilobytes to bytes, which is the required input format for 
the urandom() method. 
 
The use of os.urandom() was particularly important in cryptographic contexts because it 
draws entropy from the operating system's random source, making the generated data 
unpredictable and suitable for secure encryption and decryption processes. The function 
returned the generated random data, which were then utilized as input for testing the 
performance and security of the enhanced AES algorithm under different data sizes. 
 
ECDH Integration 
 
In cryptographic systems, key generation and exchange are fundamental processes that 
ensure secure communication between parties. ECDH key exchange was utilized owing 
to its efficiency and strong security properties. Figure 5 shows how a pair of ECDH keys 
was generated.  
 

 
 

Figure 5. ECDH Integration for Key Generation 
 

The provided code integrated Elliptic Curve Diffie-Hellman (ECDH) for secure key 
generation and exchange, which enhanced the Advanced Encryption Standard (AES) by 
providing a mechanism for generating a shared key between two parties. This integration 
is particularly useful in establishing secure communication channels.  
 
The process begins by generating ECDH keys using the generate_ecdh_keys function, 
which creates a private and public key pair. The shared key is derived from these keys 
using the derive_shared_key function, where the private key and the public key's point 
are combined to create a shared secret. This shared secret is then used with the scrypt 
key derivation function to produce a robust encryption key. 
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Implementation of Enhanced AES Algorithm with Pre-Processing and Post-
Processing Functions 
 
The following figure demonstrates the implementation of an Enhanced AES algorithm 
designed to strengthen security through additional pre-processing and post-processing 
steps.  
 

 
 

Figure 6. Implementation of Enhanced AES Algorithm with Pre-Processing and Post-
Processing Functions 

 
The provided code outlines the enhanced AES algorithm, which incorporates pre-
processing and post-processing steps to bolster data security. Initially, the 
preprocess_data function transforms the input data by XORing each byte with an SHA-
256 hash of the data, enhancing its randomness and resistance to attacks. Following this, 
the encrypt_data_enhanced_aes function encrypts the preprocessed data using AES in 
GCM mode, which provides both confidentiality and authentication. Upon decryption, the 
decrypt_data_enhanced_aes function reverses this process by first verifying and 
decrypting the ciphertext and then applying the postprocess_data function. This post-
processing step reverts the data to their original form by applying the same XOR operation 
as pre-processing. These additional steps are aimed at strengthening the security of the 
AES algorithm, making it more resilient to various cryptographic attacks. 
 
Data Analysis 
 
In this study, a series of tests were conducted to evaluate the performance of the 
enhanced AES algorithm. The performance parameters analyzed in this study are as 
follows: 
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1. Execution Time. The execution times for encryption and decryption were measured 
using time.time() function before and after the operation. The difference between these 
timestamps, converted to milliseconds, provides an accurate measure of the time taken 
for encryption or decryption. 
 

 
 
 
 

 
2. CPU Usage. CPU usage was measured using the psutil library, specifically the 
psutil.cpu_percent(interval=1) function, which calculates the percentage of CPU 
resources utilized during the encryption or decryption processes.  
 

 
 
 
3. Memory Usage.  Memory usage was measured using psutil.virtual_memory().used, 
which provides memory in bytes. The results were converted into megabytes for clarity.  
 
 
 
 
4. Security Evaluation. The security of the encrypted data was assessed through several 
metrics:  
 

HMAC Time. Measured by how long it took to create an HMAC of the data. 
 
 
 

 
 
 

 
 

 
Entropy (Shannon Entropy): Shannon Entropy is a measure of randomness or 
unpredictability in encrypted data, calculated using the scipy.stats.entropy function. 
Higher entropy values indicated more secure encryption, as they suggested that the 
data were well distributed and resistant to patterns that could be exploited by attackers. 
  
 
 
 
 

 

start_time = time () 
nonce, ciphertext, tag = encrypt_data_enhanced_aes(shared_key, data) 
encryption_time_enhanced = (time () - start_time) × 1000 

 

cpu_usage_enhanced = psutil.cpu_percent(interval=1) 
 

memory_usage_enhanced = psutil.virtual_memory().used / (1024 * 1024) 
 

def measure_hmac_time(key, data): 
    start_time = time () 
    h = HMAC.new(key, digestmod=SHA256) 
    h.update(data) 
    hmac_time = (time () - start_time) * 1000 
    return hmac_time. 

 

Def Shannon entropy(data): 
    data = np.array(list(data)) 
    data_probs = np.bincount(data) / len(data) 
    return entropy(data_probs[data_probs > 0], base=2). 
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DFA Resistance: Determined based on the number of post-processing steps 
implemented in the algorithm. 
 
 
 
 
 
 

 
Side-Channel Resistance: Estimated based on the number of preprocessing steps. 
 
 
 
 
 

 
Cryptanalysis Resistance: Estimated based on the key length. 
 
 
 
 
 

 
Brute-Force: Calculated based on key length and guesses per second. The total 
number of keys and estimated time in years to try all possible combinations were 
computed, providing a clear picture of how secure the algorithm was against brute-
force attacks. 
 
 
 
 
 

 
 
The performance results were visualized using various plots to compare the performance 
and security features of the enhanced AES algorithm with those of the standard AES. 
This visualization highlights the benefits and trade-offs of integrating ECDH for key 
exchanges in cryptographic systems. 
 
The plots provide a clear comparative analysis of the enhanced AES versus standard 
AES across different file sizes. Metrics were recorded for file sizes of 500, 1,000, 2,000, 
3,000, and 5,000 KB, with each size tested ten times. The mean values of these metrics 
were plotted to offer a comprehensive comparison. 
 

 

def calculate_dfa_resistance(post-processing _steps): 
    print(f"DFA resistance with {postprocessing_steps}steps") 
    resistance = 2.0 + 1.0 * postprocessing_steps 
    return resistance 
 
 

def calculate_side_channel_resistance(preprocessing_steps): 
    print(f"Side-channel resistance with {preprocessing_steps} steps") 
    resistance = 2.0 + 1.0 × preprocessing_steps 
    return resistance. 
 
 

def calculate_cryptanalysis_resistance(key_length_bits): 
    print(f"Cryptanalysis resistance for {key_length_bits} bits") 
    resistance = key_length_bits / 32.0 
    return resistance 
 
 

def calculate_brute_force_time(key_length_bits, guesses_per_second): 
    total_keys = 2 ** key_length_bits 
    total_seconds = total_ keys/guesses _per_second 
    years = total_seconds / (365 × 24 × 3600) 
    return total_keys, years 
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RESULTS AND DISCUSSION 

 

Model Created by Integrating Elliptic Curve Diffie-Hellman (ECDH) 

 

Figure 7 provides a detailed illustration of the model developed for integrating the Elliptic 
Curve Diffie-Hellman (ECDH) to enhance the Advanced Encryption Standard (AES). 
 

 
Figure 7. Enhanced AES Model Integrating ECDH 

 

The model integrates the Elliptic Curve Diffie-Hellman (ECDH) Key Exchange Algorithm 

with the Advanced Encryption Standard (AES) to enhance data transmission security. In 

this model, Party A initiates the encryption process by generating a shared key through 

the ECDH. This key is then used to apply two initial rounds of processing to the plaintext 

before implementing the standard AES-256 encryption rounds. The ciphertext generated 

was transmitted to Party B, which used the shared key obtained through ECDH to perform 

two final rounds of processing on the ciphertext before implementing the AES-256 

decryption rounds, thereby retrieving the plaintext. This enhanced AES encryption and 

decryption process leveraged the strength of ECDH in generating a robust shared key, 

providing an additional layer of security to traditional AES encryption. The integration of 

ECDH ensures that even if the ciphertext is intercepted without a shared key, decryption 

remains infeasible. 

 

The ECDH provides a secure method for key exchange, which is crucial for establishing 

secure communication channels. Incorporating ECDH into encryption schemes for 

multimedia data over insecure networks ensures confidentiality, user authentication, and 

secure key-sharing (Gupta & Reddy, 2022). The use of elliptic curve cryptography, 

including ECDH, is vital in modern cryptographic algorithms for addressing the evolving 
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challenges of information protection in an increasingly digital world (Kumar, Mentha, 

Kalyan, & Ibrahim, 2023). 

 

Measuring the Performance of the Enhanced Advanced Encryption Standard (AES) 

Cryptography Algorithm Compared to Standard AES Cryptography Algorithm 

 

Execution Time 

 

Figure 8 illustrates and compares the execution times of both the enhanced AES and 
standard AES algorithms for the encryption processes across various file sizes. 
 

 
Figure 8. Comparative Analysis of Encryption Time (ms) Between Standard AES and 

Enhanced AES Cryptography Algorithm 

 

The comparative analysis of encryption time between Standard AES and Enhanced AES 
revealed that Enhanced AES consistently exhibited longer encryption times across all file 
sizes. For a 500 KB file, Enhanced AES encryption took approximately 60.11 ms, whereas 
Standard AES took about 42.81 ms. This trend continued with increasing file sizes, 
showing Enhanced AES encryption times of 122.56 ms, 257.66 ms, 381.99 ms, and 
610.84 ms for 1000 KB, 2000 KB, 3000 KB, and 5000 KB files, respectively. In 
comparison, the Standard AES encryption times for the same file sizes were notably 
shorter: 86.02 ms, 175.54 ms, 266.76 ms, and 434.99 ms. 
 
The results indicated that Enhanced AES, while offering potentially improved security 
features, incurred a higher computational overhead than Standard AES. This increase in 
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encryption time is attributed to the additional processing involved in the Enhanced AES 
algorithm, such as the integration of more complex key management and cryptographic 
operations. The longer encryption times for the Enhanced AES suggested that the 
algorithm's enhanced security measures came at the cost of increased computational 
requirements. 
 
Figure 9 illustrates and compares the execution times of both the enhanced AES and 
standard AES algorithms for the decryption processes across various file sizes. 
 

 
Figure 9. Comparative Analysis of Decryption Time (ms) Between Standard AES and 
Enhanced AES Cryptography Algorithm 

 
The comparative analysis of the decryption time between the Standard AES and 
Enhanced AES algorithms showed that Enhanced AES consistently required more time 
to complete decryption across all file sizes. For a 500 KB file, Enhanced AES decryption 
took approximately 60.72 ms, compared to 42.91 ms for Standard AES. As file sizes 
increased, the decryption times for Enhanced AES also rose: 124.80 ms for 1000 KB, 
259.06 ms for 2000 KB, 390.18 ms for 3000 KB, and 613.53 ms for 5000 KB files. In 
comparison, Standard AES decryption times were shorter: 87.72 ms for 1000 KB, 174.84 
ms for 2000 KB, 263.97 ms for 3000 KB, and 434.08 ms for 5000 KB files. 
 
This trend indicated that the Enhanced AES incurred a higher computational overhead 
for decryption than the Standard AES. The longer decryption times were attributed to the 
additional complexities and security features integrated into the Enhanced AES algorithm, 
such as the more intricate key management and encryption techniques. Thus, while 
Enhanced AES offers superior security, it results in increased time requirements for 
decryption. Bhardwaj and Gupta (2020) discussed the impact of additional round keys on 
the overall encryption process, emphasizing that the integration of ECDH for key 
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exchange, while improving security, adds a computational load that results in longer 
encryption times. Similarly, a study by Johnson, Smith, and Nguyen (2019) evaluated the 
performance trade-offs in enhanced cryptographic protocols, highlighting that the added 
security features in Enhanced AES inherently demand more processing power and time. 
 
Memory Usage 
 
Figure 10 illustrates the memory usage results for both Standard AES and Enhanced AES 
during the encryption processes across different file sizes. It provides a comparative view 
of memory consumption for each algorithm with varying file sizes. 
 

 
Figure 10. Comparative Analysis of Memory Usage (MB) in Encryption Between 
Standard AES and Enhanced AES Cryptography Algorithm 

 

Figure 10 compares the memory usage during the encryption process of the Enhanced 
AES and Standard AES. For a 500 KB file, the Enhanced AES used 9007.9 MB, which is 
slightly higher than the 9001.99 MB used by the Standard AES. At 1000 KB, Enhanced 
AES required 9252.78 MB, compared to 9258.66 MB for Standard AES. For 2000 KB 
files, Enhanced AES used 9233.07 MB, while Standard AES used 9237.2 MB. At 3000 
KB, Enhanced AES required 9245.03 MB, compared to 9235.93 MB for Standard AES. 
For the largest file size of 5000 KB, Enhanced AES used 9384.61 MB, whereas the 
Standard AES used 9339.47 MB. These results showed that Enhanced AES generally 
used slightly more memory than Standard AES, with the difference being more noticeable 
for larger file sizes. 
 
Figure 11 illustrates the memory usage results for both the Standard AES and Enhanced 
AES during the decryption processes across different file sizes. It provides a comparative 
view of memory consumption for each algorithm with varying file sizes. 
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Figure 11. Comparative Analysis of Memory Usage (MB) in Decryption Between 
Standard AES and Enhanced AES Cryptography Algorithm 

 

Figure 11 shows the memory usage during the decryption process for the Enhanced AES 
compared with the Standard AES. For a 500 KB file, Enhanced AES used 9024.63 MB, 
slightly more than the 9005.56 MB used by Standard AES. At 1000 KB, Enhanced AES 
required 9261.31 MB, compared to 9253.04 MB for Standard AES. For 2000 KB files, 
Enhanced AES used 9227.28 MB, while Standard AES used 9234.81 MB. At 3000 KB, 
Enhanced AES required 9245.18 MB, compared to 9235.82 MB for Standard AES. For 
5000 KB files, Enhanced AES used 9383.89 MB, whereas Standard AES used 9351.98 
MB. These results indicate that Enhanced AES generally uses more memory than 
Standard AES during decryption, with the difference becoming more noticeable at larger 
file sizes. 
 
Recent research has highlighted the integration of Elliptic Curve Diffie-Hellman (ECDH) 
for its memory efficiency benefits in cryptographic algorithms. Bhardwaj and Gupta (2020) 
demonstrated that ECDH, as a component of ECC, offers substantial memory efficiency 
compared to traditional algorithms, making it an attractive choice for applications where 
memory resources are limited. Kumar and Agrawal (2021) explored the use of energy-
efficient and secure cryptographic protocols for sensor networks.  
 
CPU Usage 
 
Figure 12 compared CPU usage during encryption between the Standard AES and 
Enhanced AES algorithms as a function of file size. It offered a comparative analysis of 
how CPU consumption varies with file size for each algorithm. 
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Figure 12. Comparative Analysis of CPU Usage (%) in Encryption Between Standard 
AES and Enhanced AES Cryptography Algorithm 

 
Figure 12 compared CPU usage during the encryption process for Enhanced AES and 
Standard AES. For a 500 KB file, Enhanced AES used 3.09% CPU, which was lower than 
the 4.79% used by Standard AES. At 1000 KB, Enhanced AES required 2.71% CPU, 
compared to 3.96% for Standard AES. For 2000 KB files, Enhanced AES used 1.84% 
CPU, whereas Standard AES used 2.34%. At 3000 KB, Enhanced AES used 2.23% CPU, 
while Standard AES required 2.50%. However, for the largest file size of 5000 KB, 
Enhanced AES had a higher CPU usage of 4.91% compared to 4.30% for Standard AES. 
Overall, Enhanced AES generally used less CPU than Standard AES, except for the 
largest file size where it exceeded Standard AES. 
 
Figure 13 compared CPU usage during decryption between the Standard AES and 
Enhanced AES algorithms as a function of file size. It offered a comparative analysis of 
how CPU consumption varies with file size for each algorithm. 
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Figure 13. Comparative Analysis of CPU Usage (%) in Decryption Between Standard 

AES and Enhanced AES Cryptography Algorithm 

 

Figure 13 compared CPU usage during the decryption process for Enhanced AES and 
Standard AES. For a 500 KB file, Enhanced AES used 4.48% CPU, slightly higher than 
the 3.95% used by Standard AES. At 1000 KB, Enhanced AES required 2.42% CPU, 
compared to 5.19% for Standard AES. For 2000 KB files, Enhanced AES used 1.81% 
CPU, whereas Standard AES used 2.12%. At 3000 KB, Enhanced AES had a CPU usage 
of 2.38%, compared to 2.24% for Standard AES. However, for the largest file size of 5000 
KB, Enhanced AES had a higher CPU usage of 4.60% compared to 6.69% for Standard 
AES. Overall, Enhanced AES generally had lower CPU usage than Standard AES except 
for the smallest and largest file sizes. 
 
Integrating the Elliptic Curve Diffie-Hellman (ECDH) algorithm leads to lower CPU usage 
owing to its efficient cryptographic operations and reduced computational complexity. 
Research showed that ECDH provided a high level of security with optimized area and 
reduced power consumption, making it a suitable alternative for applications requiring low 
hardware resources and power consumption (Saoudi, Kermich, Zebda, & Allailou, 2021). 
 
Security 
 
Figure 14 compares the security features of Standard AES with those of Enhanced AES, 
incorporating ECDH integration and additional pre- and post-processing encryption. This 
provides a detailed comparison of the security enhancements and improvements offered 
by the enhanced AES algorithm. 
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Figure 14. Security Analysis Between Standard AES and Enhanced AES Cryptography 
Algorithm 

 
The security analysis of Enhanced AES with ECDH integration, compared to Standard 
AES, revealed several critical findings across key security metrics, highlighting the 
benefits and trade-offs of the enhancement. First, the HMAC time showed a slight 
increase from 22.8 milliseconds in Standard AES to 23.6 milliseconds in Enhanced AES. 
This marginal increase was due to the additional computational steps required by the 
ECDH key exchange process, which introduced more complexity and processing time. 
While the increase in HMAC time was minimal, it reflected the added security layers that 
strengthened the data integrity and authenticity. 
 
Entropy, a measure of randomness in key generation, remained consistent at 8.0, for both 
Standard and Enhanced AES. This stability indicates that the ECDH integration preserved 
the inherent randomness crucial for maintaining cryptographic strength, ensuring that the 
enhanced version did not compromise the unpredictability of key generation. Notably, the 
Enhanced AES showed a significant improvement in Differential Fault Analysis (DFA) 
resistance, increasing from 2.0 Standard AES 3.0. This enhancement indicates that the 
algorithm is better equipped to withstand DFA attacks, which exploit faults in the 
encryption process to reveal secret keys, thereby rendering the Enhanced AES more 
resilient to such sophisticated attacks. 
 
Similarly, the Side-Channel Resistance showed a notable improvement in the Enhanced 
AES, rising from 2.0 3.0. Side-channel attacks exploit information leaked during 
encryption, such as the timing or power consumption, to infer secret keys. The increased 
resistance in the enhanced version suggests that the ECDH integration fortified the 
algorithm against these non-invasive attacks, reducing the risk of key leakage. 
Cryptanalysis Resistance remained high and consistent at 8.0 for both versions, 
indicating that the core strength of AES in resisting direct cryptanalytic attacks was 
preserved in the enhanced version. 
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Finally, the Brute-Force Resistance remained extraordinarily high for both the Standard 
and Enhanced AES, with an estimated time of 3.7e+59 years to exhaustively search all 
possible keys. This consistency indicates that the integration of ECDH did not 
compromise the algorithm's resistance to brute-force attacks, thus ensuring long-term 
security for encrypted data. In summary, although Enhanced AES with ECDH integration 
introduces a slight increase in processing time, it offers significant improvements in 
resistance to DFA and side-channel attacks, making it a more secure option for protecting 
sensitive information (Gupta et al., 2021). 
 
Conclusion 
 
Based on the summary of the experiment conducted, the researcher concluded that: 

1. Integrating ECDH with AES-256 encryption enhances security by providing a 
secure method for key exchange and encryption, addressing AES's inherent 
weaknesses in key management. 

2. The findings confirmed that the enhanced AES algorithm, incorporating ECDH for 
key exchange, maintained stable memory usage and demonstrated varied but 
generally efficient performance in encryption and decryption times, with CPU 
usage increasing as file sizes increased. 

3. The performance analysis of the Enhanced AES algorithm revealed that both 
encryption and decryption times, as well as memory usage, increased with file size, 
whereas CPU usage initially decreased with file size before rising significantly for 
larger files, indicating a complex relationship between file size and computational 
resources. 

4. While the Enhanced AES algorithm generally incurred higher execution time and 
memory usage compared to the Standard AES algorithm, it demonstrated 
improved resistance to side-channel attacks and differential fault analysis, 
indicating a trade-off between performance and enhanced security capabilities, 
making it well-suited for applications prioritizing robust security over resource 
constraints.  
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