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Abstract. Globally, the healthcare industry is a critical sector that directly
influences human life. Ensuring the confidentiality, integrity, and authenticity of
health data is paramount to protecting individual privacy. Although the Advanced
Encryption Standard (AES) is a widely recognized encryption technique, it has
inherent vulnerabilities, particularly in secure key sharing. Compromises in these
channels can undermine the overall strength of AES encryption. In response to the
increasing threat of data breaches, numerous cryptographic algorithms have been
developed to protect digital health records and communication. These include
symmetric algorithms, such as the Advanced Encryption Standard (AES) and Data
Encryption Standard (DES), and asymmetric algorithms, such as Rivest-Shamir-
Adleman (RSA) and Elliptic Curve Cryptography (ECC). This paper presents an
enhanced AES algorithm integrated with an Elliptic Curve Diffie-Hellman (ECDH),
which strengthens key management by offering secure key generation and
additional cryptographic layers. The research employed an experimental design
utilizing PyCryptodome for implementation, alongside tools such as NumPy, psutil,
and Matplotlib for performance testing and analysis. Comparative evaluations of
the enhanced AES-ECDH and standard AES algorithms were conducted in terms
of execution time, CPU usage, memory consumption, and security analysis.
Dummy datasets were used to uphold ethical standards, ensuring that sensitive
information was not compromised during testing.

The findings revealed that while the enhanced AES-ECDH algorithm significantly
improves security by offering features such as forward secrecy and heightened
resistance to various attacks, it comes at the expense of increased resource
consumption. Despite this trade-off, the enhanced algorithm is highly suitable for
scenarios that prioritize data protection over system performance, particularly in
healthcare environments.

Keywords: AES, ECDH, cryptography, security, encryption, decryption, key
exchange

INTRODUCTION

The health industry plays a vital role in ensuring the security of data in different sectors.
With the widespread digitalization of medical services and increasing reliance on
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electronic health records (EHRS), ensuring the secure exchange of sensitive health
information among healthcare providers, patients, and authorized entities has become
essential. Protecting the confidentiality, integrity, and authenticity of heath data is critical
not only to uphold patient trust but also to comply with international data privacy standards
like the Health Insurance Portability and Accountability Act (HIPAA) in the United States
(Computer Security Division, Information Technology Laboratory, National Institute of
Standards and Technology, U.S. Department of Commerce, 2001).

In response to the rising threat of data breaches, several cryptographic algorithms have
been developed to safeguard digital health records and communication. This includes
symmetric algorithms like Advanced Encryption Standard (AES) and Data Encryption
Standard (DES) and asymmetric algorithms like RSA and Elliptic Curve Cryptography
(ECC). The choice of algorithm played an important role in balancing security and
efficiency. An algorithm such as the Advanced Encryption Standard (AES) was preferred
to secure data transmission. The AES algorithm was developed by two Belgian
cryptographers, Vincent Rijmen and Joan Daemen, through a process initiated by NIST
to replace the outdated Data Encryption Standard (DES) and to meet the growing security
needs of the 21st century (Brahmaiah et al., 2023). Unlike DES, AES operates on a
substitution-permutation network design principle, enhancing its efficiency in both
software and hardware applications (Al-Khafaji & Abdul, 2022). It was the best algorithm
recognized by NIST and approved by NSA for protection of the top-secret information and
national security systems (National Institute of Standards and Technology, 2001).

However, given the ever-growing computational power available to attackers,
continuously enhancing AES security features is imperative. In addition, AES's key
sharing of AES depends on a secure channel; if that channel is compromised, the security
of the information is compromised (Bhowmika et al., 2022). Therefore, it is necessary to
secure the key to the AES algorithm. To address these concerns, this research enhanced
AES cryptography by integrating Elliptic Curve Diffie-Hellman (ECDH) Key Exchange and
additional round keys in both the pre-processing and post-processing stages.

To overcome these limitations, hybrid encryption techniques are becoming popular where
AES is combined with Elliptic Curve Diffie-Hellman (ECDH) augmenting security because
they enable secure key exchange even over insecure channels. ECDH offers forward
secrecy and a very high level of security, even while keeping key sizes small compared
to RSA, making ECDH an ideal candidate for health applications where performance
meets security requirements. This study proposes an Enhanced AES cryptography
algorithm that integrates ECDH for secure key generation and includes the use of
additional round keys in both the pre-processing and post-processing phases to enhance
resilience against advanced attacks.

The performance of the proposed algorithm was evaluated on parameters such as
execution time, CPU utilization, memory usage, and security, and compared to standard
AES implementations. A rigorous security analysis was conducted to validate its
efficiency and effectiveness, offering insights into the relative strengths and weaknesses
of the enhanced algorithm and to guide future developments in cryptographic protocols
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for healthcare data security. This integration addresses the pressing need for enhanced
security measures on health-information exchange platforms.

Literature Review

Cryptography plays a vital role in protecting digital information and ensuring the
confidentiality, integrity, and authenticity of data across different sectors such as
healthcare, finance, and e-commerce. This is done by encrypting and decrypting data
using algorithms and cryptographic keys to keep it secure from unauthorized access and
to allow secure communication (Raj & Kaur, 2023). Over time, cryptographic techniques
have evolved considerably with the contributions of the mathematics and computing
sciences. The more widely used algorithms developed are those of the Advanced
Encryption Standard (AES), Rivest-Shamir-Adleman (RSA), Data Encryption Standard
(DES), and Elliptic Curve Cryptography (ECC), which have served well against various
security paradigms depending on the area of application context (Akram, 2022).

In the context of finance, however, encryption techniques are considerably useful, as they
protect sensitive data, such as banking credentials, credit card numbers, and transaction
history. RSA and ECC find prominent applications in secure online banking and digital
signatures by providing high-level security using asymmetric encryption. Likewise, in the
case of e-commerce, data encryption applying symmetric encryption methods, such as
AES, provides a suitable and fast process for real-time transactions. SSL/TLS sits on top
of previous methods and integrates them to provide an end-to-end secure channel for
communication between clients and servers (Li, 2022). These real-world applications
illustrate the versatility of cryptography and its critical role in fostering trust and reliability
of digital services.

In the healthcare domain, the secure exchange of electronic health records (EHRs) and
personal health information (PHI) has become increasingly important, particularly with the
shift toward digital and cloud-based health systems. Traditional cryptographic techniques,
such as DES and RSA, have been implemented in early health information systems, but
their limitations in terms of speed and computational efficiency have prompted the
exploration of advanced methods. AES then became the standard for encrypting medical
data due to its speed and resistance against brute-force attacks (Carlet, Jakobovic, &
Picek, 2021). However, the need for secure key exchange mechanisms has led to the
exploration of ECC and its variants, such as the Elliptic Curve Diffie-Hellman (ECDH),
which offers strong security with smaller key sizes, ideal for resource-constrained
healthcare environments.

Hybrid encryption models that integrate symmetric and asymmetric techniques, such as
AES with ECC or RSA, have gained popularity owing to their ability to combine the
strengths of both methods. These hybrid approaches improve overall security by using
asymmetric algorithms for key exchange and symmetric algorithms for data encryption.
Studies by Negi, Shrestha, Borges, Sahana, & Das (2023), and Sharma, Kumar, & Gupta
(2023) illustrates the effectiveness of hybrid techniques for data confidentiality and
efficiency in health information systems. In addition, recent advancements, such as the
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incorporation of ECDH into AES frameworks, have shown potential in minimizing
computational load while ensuring robust protection, making them suitable for modern
health IT infrastructures (Saepulrohman, Denih, Sukono, & Bon, 2020).

Continual innovation in cryptographic techniques, reflected in the refinement of existing
algorithms and creation of hybrid models, underscores the dynamic nature of the field.
Despite these advances, gaps remain in optimizing encryption for specific domains such
as healthcare, where low latency, lightweight processing, and high security are
simultaneously required. This study addresses this gap by proposing an enhanced AES
algorithm integrated with ECDH for improved key management and overall system
performance, contributing to ongoing efforts to develop secure and efficient solutions for
health information exchange.

Conceptual Framework

Figure 1 Paradigm of the Study outlined the theoretical constructs and relationships that
guided the development of an enhanced AES Cryptography Algorithm through the
implementation of additional keys (pre-processing and post-processing) and ECDH key
generation integration. The enhanced algorithm, referred to as AES-ECDH, combined
two fundamental cryptographic techniques to improve both security and performance.

INPUT PROCESS OUTPUT
1. Data Input (text Testing Algorithm:
file of varying sizes) Key Generation Secured Exchange
Encryption Time of Encrypted
2. Elliptic Curve Decryption Time Message
Domain Key
Parameters (P256
Creg) ( . Performance . Performance
Evaluation: Evaluation Result
: Execution time (ms)
3. AES 256 Usin : ;
GCM and additional Memory usage (KB) Sec“rF';g %?ta'ys's
2 rounds key (pre- CPU usage (%) P
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Figure 1. Paradigm of the Study

The conceptual framework of this study outlines the flow from input through processing
to output, focusing on the integration of ECDH and an enhanced AES algorithm. The input
phase includes data input from text files of varying sizes, elliptic curve domain key
parameters based on the P256 curve, and AES 256 using the Galois/Counter Mode
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(GCM) with additional rounds of key processing. These inputs are crucial for testing the
robustness and scalability of the encryption algorithms.

This study involved several key activities in the process phase. The testing algorithm
component included key generation using ECDH, measurement of encryption time, and
decryption time. Performance evaluation assesses execution time in milliseconds,
memory usage in megabytes, and CPU usage in percentage. In addition, a security
assessment was conducted to analyze the security features and potential vulnerabilities
of the encryption algorithm.

The output phase delivers several critical results, including secure exchange of encrypted
messages and ensuring data confidentiality and integrity. The performance evaluation
results provide detailed metrics of the execution time, memory usage, and CPU usage of
the enhanced AES algorithm. Finally, the security analysis report offers a comprehensive
assessment of the strengths of the algorithm and the potential areas for improvement.
This structured approach aims to demonstrate the practical performance and theoretical
security of the proposed cryptographic solution, highlighting its importance for securing
sensitive health information.

METHOD
Research Design

The study used an experimental research design to evaluate the performance and
efficiency of enhanced AES cryptography with integrated ECDH key generation and
added key implementation for pre- and post-processing. Experimental research on
cryptographic algorithms has played a crucial role in assessing security and performance,
as observed in different studies. By systematically manipulating the variables and
observing the outcomes, researchers have validated the functionality, efficiency, and
security of cryptographic algorithms under various conditions. For instance, Johnson
(2019) highlighted how controlled experiments help in understanding the practical
performance and potential vulnerabilities of cryptographic methods. Similarly, Gupta,
Singh, and Sharma (2021) emphasized that empirical testing could either support or
challenge theoretical claims, contributing to the development of more robust
cryptographic systems. Furthermore, Smith and Lee (2022) illustrated that experimental
research provides valuable empirical evidence, ensuring that cryptographic algorithms
meet security and efficiency standards in real-world applications.

The experimental framework involved examining the underlying mathematical concept of
the AES-ECDH algorithm and demonstrating its cryptographic function. An experimental
group utilized the proposed algorithm and compared its performance with that of a
standard AES algorithm. This method includes a systematic exploration and analysis of
existing concepts, hypothesis formulation, and experimental concept testing to deepen
understanding and generate insights.
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Instrument

To implement and evaluate the enhanced algorithm, Python Programming Language was
utilized with PyCryptodome, a self-contained Python package of low-level cryptographic
primitives that performs encryption and decryption operations and manages
cryptographic keys. The development and testing phases were conducted using a range
of specialized Python libraries.

Figure 2 presents a list of libraries utilized to ensure the accuracy, efficiency, and security
of the algorithm.
= MP| main.py ¥ Version control v

D e main.py = requirements.txt

port os

B
import time
i

ort hashlib

Figure 2. Libraries Utilized for Implementing and Evaluating the Enhanced AES Algorithm

To implement and evaluate the Enhanced AES Algorithm, a variety of Python libraries
were utilized, each serving a specific purpose during the development process. The os
and time modules are foundational in handling operating system-level tasks and timing
functions, which are essential for evaluating performance metrics. The psutil library was
instrumental in monitoring the system resource usage, such as CPU and memory,
providing insights into the efficiency of the algorithm.

Cryptographic operations were central to this implementation, with the pycryptodome
library as the primary tool. It included the Crypto.Cipher module for AES encryption,
Crypto.PublicKey for handling Elliptic Curve Cryptography (ECC), Crypto.Protocol. KDF
for key derivation using the scrypt algorithm, and Crypto.Hash for hashing functionalities
such as HMAC and SHA-256. These cryptographic modules collectively enhance the
security aspects of the AES algorithm by incorporating elliptic curve key exchange and
robust hashing mechanisms.

For data manipulation and visualization, pandas were employed to manage and process
datasets, whereas matplotlib and seaborn were used to create detailed plots and
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visualizations that aid in analyzing the performance of the Enhanced AES Algorithm.
Additionally, numpy is crucial for numerical computations, and scipy.stats is utilized for
statistical analysis, specifically the entropy function, which measures the unpredictability
and security of cryptographic keys. Finally, hashlib provided additional hashing functions,
complementing cryptographic operations.

Data Collection

Generated random data with different file sizes were used to test the enhanced AES
algorithm. Owing to the sensitive nature of healthcare data, most ethical considerations
have been observed. Dummy data were used to mitigate risk during the testing phase.
The execution of test cases involving key generation, data encryption, and data
decryption was recorded. These results were used to measure the performance using
metrics such as execution time, memory usage, CPU usage, and security. Additionally, a
comparison of the performance with the standard AES algorithm under similar conditions
was also conducted to highlight the strengths of the proposed algorithm.

Figure 3 illustrates the interaction between AES and ECDH. The model demonstrates
how the integration of ECDH enhances AES by providing secure key exchange along
with the addition of initial and final round keys.
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Figure 3. Data Flow Diagram of Enhanced AES with ECDH Key Exchange
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The data flow of the Enhanced AES algorithm with ECDH key exchange begins with the
Key Generation and Exchange (ECDH) process. Initially, both parties (Party A and Party
B) independently generated their private keys. Subsequently, they compute their
corresponding public keys and exchange them securely. Using their private keys in
conjunction with the exchanged public keys, both parties calculate a shared secret key,
denoted by K=AP=B2, ensuring that the secret key is identical on both sides. The shared
secret key forms the foundation of the subsequent encryption process.

In the Enhanced AES Encryption phase, plaintext data are encrypted using the shared
secret key derived from the ECDH key exchange. This shared key serves as the basis
for generating additional round keys, which provides an added layer of security through
an intricate key scheduling process. The encryption process begins by introducing these
extra round keys before proceeding to the core AES algorithm. The enhanced AES
algorithm operates in AES.MODE_GCM, incorporating 16 round keys in total: two
additional round keys derived from the shared secret key and the standard 14 round keys
of AES.

The encryption sequence included several critical steps: an initial Add Round Key,
SubBytes for nonlinear substitution, Shift Rows for cyclic shifting of rows, Mix Columns
for column-wise mixing, and a final Add Round Key. By incorporating extra round keys
before entering the standard AES rounds, the algorithm achieves heightened security.

Test Environment

The hardware configuration utilized for this study included a 12th Gen Intel(R) Core(TM)
i5-1450H processor equipped with 16.0 GB of RAM. The software environment comprised
a Windows 11 operating system and Python 3.12.

Test Data

For experimental analysis, different file sizes were used to evaluate the performance of
the enhanced AES algorithm. The file sizes ranged from 500 KB to 5000 KB, specifically
500, 1000, 2000, 3000, and 5000 KB. Each file size was subjected to ten separate tests
to ensure a comprehensive assessment of the performance of the algorithm across
varying data volumes.

Figure 4 shows how random data are generated as inputs for the encryption and
decryption operations.

def generate_data(size_kb):

int(f"Generating {size_kb} KB

return os.urandom(size_kb =*

Figure 4. Function to Generate Random Data
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The provided code illustrates the function used to generate random data for encryption
and decryption operations. The function, named generate_data, takes a single parameter
size_kb, representing the desired size of the generated data in kilobytes.

The core of this function lies in the use of the os.urandom() method, which is responsible
for producing random data. By multiplying the input parameter size_kb by 1024, the
function converts the size from kilobytes to bytes, which is the required input format for
the urandom() method.

The use of os.urandom() was particularly important in cryptographic contexts because it
draws entropy from the operating system's random source, making the generated data
unpredictable and suitable for secure encryption and decryption processes. The function
returned the generated random data, which were then utilized as input for testing the
performance and security of the enhanced AES algorithm under different data sizes.

ECDH Integration

In cryptographic systems, key generation and exchange are fundamental processes that
ensure secure communication between parties. ECDH key exchange was utilized owing
to its efficiency and strong security properties. Figure 5 shows how a pair of ECDH keys
was generated.

ys():
(

private_key = ECC.generate(

y(private_key, public_key):
( )
= private_key.d * public_key.pointQ

red_secret.x.to_bytes((shared_secret.x.size_in_bits() + 7) // 8,

shared_key (shared_secret_bytes, salt, , N=2%xx14, r=8, p=1)

shared_key

Figure 5. ECDH Integration for Key Generation

The provided code integrated Elliptic Curve Diffie-Hellman (ECDH) for secure key
generation and exchange, which enhanced the Advanced Encryption Standard (AES) by
providing a mechanism for generating a shared key between two parties. This integration
is particularly useful in establishing secure communication channels.

The process begins by generating ECDH keys using the generate_ecdh_keys function,
which creates a private and public key pair. The shared key is derived from these keys
using the derive_shared_key function, where the private key and the public key's point
are combined to create a shared secret. This shared secret is then used with the scrypt
key derivation function to produce a robust encryption key.
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Implementation of Enhanced AES Algorithm with Pre-Processing and Post-
Processing Functions

The following figure demonstrates the implementation of an Enhanced AES algorithm
designed to strengthen security through additional pre-processing and post-processing
steps.

(data)])

Figure 6. Implementation of Enhanced AES Algorithm with Pre-Processing and Post-
Processing Functions

The provided code outlines the enhanced AES algorithm, which incorporates pre-
processing and post-processing steps to bolster data security. Initially, the
preprocess_data function transforms the input data by XORing each byte with an SHA-
256 hash of the data, enhancing its randomness and resistance to attacks. Following this,
the encrypt_data_enhanced_aes function encrypts the preprocessed data using AES in
GCM mode, which provides both confidentiality and authentication. Upon decryption, the
decrypt_data_enhanced_aes function reverses this process by first verifying and
decrypting the ciphertext and then applying the postprocess_data function. This post-
processing step reverts the data to their original form by applying the same XOR operation
as pre-processing. These additional steps are aimed at strengthening the security of the
AES algorithm, making it more resilient to various cryptographic attacks.

Data Analysis
In this study, a series of tests were conducted to evaluate the performance of the

enhanced AES algorithm. The performance parameters analyzed in this study are as
follows:
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1. Execution Time. The execution times for encryption and decryption were measured
using time.time() function before and after the operation. The difference between these
timestamps, converted to milliseconds, provides an accurate measure of the time taken
for encryption or decryption.

start_time = time ()
nonce, ciphertext, tag = encrypt_data_enhanced_aes(shared_key, data)
encryption_time_enhanced = (time () - start_time) x

2. CPU Usage. CPU usage was measured using the psutil library, specifically the
psutil.cpu_percent(interval=1) function, which calculates the percentage of CPU
resources utilized during the encryption or decryption processes.

cpu_usage_enhanced = psutil.cpu_percent(

3. Memory Usage. Memory usage was measured using psutil.virtual_memory().used,
which provides memory in bytes. The results were converted into megabytes for clarity.

memory_usage_enhanced = psutil.virtual_memory().used / (

4. Security Evaluation. The security of the encrypted data was assessed through several
metrics:

HMAC Time. Measured by how long it took to create an HMAC of the data.

def measure_hmac_time(key, data):
start_time = time ()
h = HMAC.new(key, =SHA256)
h.update(data)
hmac_time = (time () - start_time) *
return hmac_time.

Entropy (Shannon Entropy): Shannon Entropy is a measure of randomness or
unpredictability in encrypted data, calculated using the scipy.stats.entropy function.
Higher entropy values indicated more secure encryption, as they suggested that the
data were well distributed and resistant to patterns that could be exploited by attackers.

Def Shannon entropy(data):
data = np.array(list(data))

data_probs = np.bincount(data) / len(data)
return entropy(data_probs[data_probs > 0],
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DFA Resistance: Determined based on the number of post-processing steps
implemented in the algorithm.

def calculate dfa_resistance(post-processing _steps):
( {postprocessing_steps}
resistance = + * postprocessing_steps
return resistance

Side-Channel Resistance: Estimated based on the number of preprocessing steps.

def calculate_side_channel_resistance(preprocessing_steps):
( {preprocessing_steps}
resistance = + X preprocessing_steps
return resistance.

Cryptanalysis Resistance: Estimated based on the key length.

def calculate_cryptanalysis_resistance(key_length_bits):
( {key_length_bits}
resistance = key_length_bits /
return resistance

Brute-Force: Calculated based on key length and guesses per second. The total
number of keys and estimated time in years to try all possible combinations were
computed, providing a clear picture of how secure the algorithm was against brute-
force attacks.

def calculate brute force time(key_length_bits, guesses_per_second):
total_keys = 2 ** key_length_bits

total_seconds = total_ keys/guesses per_second
years = total seconds /(365 x 24 x )

The performance results were visualized using various plots to compare the performance
and security features of the enhanced AES algorithm with those of the standard AES.
This visualization highlights the benefits and trade-offs of integrating ECDH for key
exchanges in cryptographic systems.

The plots provide a clear comparative analysis of the enhanced AES versus standard
AES across different file sizes. Metrics were recorded for file sizes of 500, 1,000, 2,000,
3,000, and 5,000 KB, with each size tested ten times. The mean values of these metrics
were plotted to offer a comprehensive comparison.
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RESULTS AND DISCUSSION
Model Created by Integrating Elliptic Curve Diffie-Hellman (ECDH)

Figure 7 provides a detailed illustration of the model developed for integrating the Elliptic
Curve Diffie-Hellman (ECDH) to enhance the Advanced Encryption Standard (AES).

Plaintext ‘ Plaintext
Enhanced AES Encryption: Ciphertext Enhanced AES Decryption:
L. Apply two initial rounds of 1. Apply two final rounds of
PARTY A |«—> processing to the plaintext — processing to the ciphertext <> | PARTYB

(using Shared Key from ECDH) (using Shared Key from ECDH)

2. Implement AES-256 standard 2.Implement AES-256 standard

rounds. rounds.
Key Key

Key Generator - Key Generator
Integrating ECDH +«—— Integrating ECDH

Figure 7. Enhanced AES Model Integrating ECDH

The model integrates the Elliptic Curve Diffie-Hellman (ECDH) Key Exchange Algorithm
with the Advanced Encryption Standard (AES) to enhance data transmission security. In
this model, Party A initiates the encryption process by generating a shared key through
the ECDH. This key is then used to apply two initial rounds of processing to the plaintext
before implementing the standard AES-256 encryption rounds. The ciphertext generated
was transmitted to Party B, which used the shared key obtained through ECDH to perform
two final rounds of processing on the ciphertext before implementing the AES-256
decryption rounds, thereby retrieving the plaintext. This enhanced AES encryption and
decryption process leveraged the strength of ECDH in generating a robust shared key,
providing an additional layer of security to traditional AES encryption. The integration of
ECDH ensures that even if the ciphertext is intercepted without a shared key, decryption
remains infeasible.

The ECDH provides a secure method for key exchange, which is crucial for establishing
secure communication channels. Incorporating ECDH into encryption schemes for
multimedia data over insecure networks ensures confidentiality, user authentication, and
secure key-sharing (Gupta & Reddy, 2022). The use of elliptic curve cryptography,
including ECDH, is vital in modern cryptographic algorithms for addressing the evolving
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challenges of information protection in an increasingly digital world (Kumar, Mentha,
Kalyan, & lIbrahim, 2023).

Measuring the Performance of the Enhanced Advanced Encryption Standard (AES)
Cryptography Algorithm Compared to Standard AES Cryptography Algorithm

Execution Time

Figure 8 illustrates and compares the execution times of both the enhanced AES and
standard AES algorithms for the encryption processes across various file sizes.

Encryption Time Comparisan

—e— Standard AES
600 Enhanced AES

500

5
=3

Encryption Time (ms)
8
o

200
100

500 1000 2000 3000 5000
File Size (KB)

Figure 8. Comparative Analysis of Encryption Time (ms) Between Standard AES and
Enhanced AES Cryptography Algorithm

The comparative analysis of encryption time between Standard AES and Enhanced AES
revealed that Enhanced AES consistently exhibited longer encryption times across all file
sizes. For a 500 KB file, Enhanced AES encryption took approximately 60.11 ms, whereas
Standard AES took about 42.81 ms. This trend continued with increasing file sizes,
showing Enhanced AES encryption times of 122.56 ms, 257.66 ms, 381.99 ms, and
610.84 ms for 1000 KB, 2000 KB, 3000 KB, and 5000 KB files, respectively. In
comparison, the Standard AES encryption times for the same file sizes were notably
shorter: 86.02 ms, 175.54 ms, 266.76 ms, and 434.99 ms.

The results indicated that Enhanced AES, while offering potentially improved security
features, incurred a higher computational overhead than Standard AES. This increase in
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encryption time is attributed to the additional processing involved in the Enhanced AES
algorithm, such as the integration of more complex key management and cryptographic
operations. The longer encryption times for the Enhanced AES suggested that the
algorithm's enhanced security measures came at the cost of increased computational
requirements.

Figure 9 illustrates and compares the execution times of both the enhanced AES and
standard AES algorithms for the decryption processes across various file sizes.

Decryption Time Comparison
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Figure 9. Comparative Analysis of Decryption Time (ms) Between Standard AES and
Enhanced AES Cryptography Algorithm

The comparative analysis of the decryption time between the Standard AES and
Enhanced AES algorithms showed that Enhanced AES consistently required more time
to complete decryption across all file sizes. For a 500 KB file, Enhanced AES decryption
took approximately 60.72 ms, compared to 42.91 ms for Standard AES. As file sizes
increased, the decryption times for Enhanced AES also rose: 124.80 ms for 1000 KB,
259.06 ms for 2000 KB, 390.18 ms for 3000 KB, and 613.53 ms for 5000 KB files. In
comparison, Standard AES decryption times were shorter: 87.72 ms for 1000 KB, 174.84
ms for 2000 KB, 263.97 ms for 3000 KB, and 434.08 ms for 5000 KB files.

This trend indicated that the Enhanced AES incurred a higher computational overhead
for decryption than the Standard AES. The longer decryption times were attributed to the
additional complexities and security features integrated into the Enhanced AES algorithm,
such as the more intricate key management and encryption techniques. Thus, while
Enhanced AES offers superior security, it results in increased time requirements for
decryption. Bhardwaj and Gupta (2020) discussed the impact of additional round keys on
the overall encryption process, emphasizing that the integration of ECDH for key
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exchange, while improving security, adds a computational load that results in longer
encryption times. Similarly, a study by Johnson, Smith, and Nguyen (2019) evaluated the
performance trade-offs in enhanced cryptographic protocols, highlighting that the added
security features in Enhanced AES inherently demand more processing power and time.

Memory Usage

Figure 10 illustrates the memory usage results for both Standard AES and Enhanced AES
during the encryption processes across different file sizes. It provides a comparative view
of memory consumption for each algorithm with varying file sizes.

Memory Usage Comparison (Encryption)

—e— Standard AES
Enhanced AES

Memory Usage (MB)
]
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=
o
3

500 1000 2000 3000 5000
File Size (KB)

Figure 10. Comparative Analysis of Memory Usage (MB) in Encryption Between
Standard AES and Enhanced AES Cryptography Algorithm

Figure 10 compares the memory usage during the encryption process of the Enhanced
AES and Standard AES. For a 500 KB file, the Enhanced AES used 9007.9 MB, which is
slightly higher than the 9001.99 MB used by the Standard AES. At 1000 KB, Enhanced
AES required 9252.78 MB, compared to 9258.66 MB for Standard AES. For 2000 KB
files, Enhanced AES used 9233.07 MB, while Standard AES used 9237.2 MB. At 3000
KB, Enhanced AES required 9245.03 MB, compared to 9235.93 MB for Standard AES.
For the largest file size of 5000 KB, Enhanced AES used 9384.61 MB, whereas the
Standard AES used 9339.47 MB. These results showed that Enhanced AES generally
used slightly more memory than Standard AES, with the difference being more noticeable
for larger file sizes.

Figure 11 illustrates the memory usage results for both the Standard AES and Enhanced

AES during the decryption processes across different file sizes. It provides a comparative
view of memory consumption for each algorithm with varying file sizes.
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Memory Usage Comparison (Decryption)
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Figure 11. Comparative Analysis of Memory Usage (MB) in Decryption Between
Standard AES and Enhanced AES Cryptography Algorithm

Figure 11 shows the memory usage during the decryption process for the Enhanced AES
compared with the Standard AES. For a 500 KB file, Enhanced AES used 9024.63 MB,
slightly more than the 9005.56 MB used by Standard AES. At 1000 KB, Enhanced AES
required 9261.31 MB, compared to 9253.04 MB for Standard AES. For 2000 KB files,
Enhanced AES used 9227.28 MB, while Standard AES used 9234.81 MB. At 3000 KB,
Enhanced AES required 9245.18 MB, compared to 9235.82 MB for Standard AES. For
5000 KB files, Enhanced AES used 9383.89 MB, whereas Standard AES used 9351.98
MB. These results indicate that Enhanced AES generally uses more memory than
Standard AES during decryption, with the difference becoming more noticeable at larger
file sizes.

Recent research has highlighted the integration of Elliptic Curve Diffie-Hellman (ECDH)
for its memory efficiency benefits in cryptographic algorithms. Bhardwaj and Gupta (2020)
demonstrated that ECDH, as a component of ECC, offers substantial memory efficiency
compared to traditional algorithms, making it an attractive choice for applications where
memory resources are limited. Kumar and Agrawal (2021) explored the use of energy-
efficient and secure cryptographic protocols for sensor networks.

CPU Usage
Figure 12 compared CPU usage during encryption between the Standard AES and

Enhanced AES algorithms as a function of file size. It offered a comparative analysis of
how CPU consumption varies with file size for each algorithm.
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CPU Usage Comparison (Encryption)
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Figure 12. Comparative Analysis of CPU Usage (%) in Encryption Between Standard
AES and Enhanced AES Cryptography Algorithm

Figure 12 compared CPU usage during the encryption process for Enhanced AES and
Standard AES. For a 500 KB file, Enhanced AES used 3.09% CPU, which was lower than
the 4.79% used by Standard AES. At 1000 KB, Enhanced AES required 2.71% CPU,
compared to 3.96% for Standard AES. For 2000 KB files, Enhanced AES used 1.84%
CPU, whereas Standard AES used 2.34%. At 3000 KB, Enhanced AES used 2.23% CPU,
while Standard AES required 2.50%. However, for the largest file size of 5000 KB,
Enhanced AES had a higher CPU usage of 4.91% compared to 4.30% for Standard AES.
Overall, Enhanced AES generally used less CPU than Standard AES, except for the
largest file size where it exceeded Standard AES.

Figure 13 compared CPU usage during decryption between the Standard AES and

Enhanced AES algorithms as a function of file size. It offered a comparative analysis of
how CPU consumption varies with file size for each algorithm.
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CPU Usage Comparison (Decryption)
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Figure 13. Comparative Analysis of CPU Usage (%) in Decryption Between Standard
AES and Enhanced AES Cryptography Algorithm

Figure 13 compared CPU usage during the decryption process for Enhanced AES and
Standard AES. For a 500 KB file, Enhanced AES used 4.48% CPU, slightly higher than
the 3.95% used by Standard AES. At 1000 KB, Enhanced AES required 2.42% CPU,
compared to 5.19% for Standard AES. For 2000 KB files, Enhanced AES used 1.81%
CPU, whereas Standard AES used 2.12%. At 3000 KB, Enhanced AES had a CPU usage
of 2.38%, compared to 2.24% for Standard AES. However, for the largest file size of 5000
KB, Enhanced AES had a higher CPU usage of 4.60% compared to 6.69% for Standard
AES. Overall, Enhanced AES generally had lower CPU usage than Standard AES except
for the smallest and largest file sizes.

Integrating the Elliptic Curve Diffie-Hellman (ECDH) algorithm leads to lower CPU usage
owing to its efficient cryptographic operations and reduced computational complexity.
Research showed that ECDH provided a high level of security with optimized area and
reduced power consumption, making it a suitable alternative for applications requiring low
hardware resources and power consumption (Saoudi, Kermich, Zebda, & Allailou, 2021).

Security
Figure 14 compares the security features of Standard AES with those of Enhanced AES,
incorporating ECDH integration and additional pre- and post-processing encryption. This

provides a detailed comparison of the security enhancements and improvements offered
by the enhanced AES algorithm.
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Security Analysis of Enhanced AES Compared to Standard AES
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Figure 14. Security Analysis Between Standard AES and Enhanced AES Cryptography
Algorithm

Security Metrics

The security analysis of Enhanced AES with ECDH integration, compared to Standard
AES, revealed several critical findings across key security metrics, highlighting the
benefits and trade-offs of the enhancement. First, the HMAC time showed a slight
increase from 22.8 milliseconds in Standard AES to 23.6 milliseconds in Enhanced AES.
This marginal increase was due to the additional computational steps required by the
ECDH key exchange process, which introduced more complexity and processing time.
While the increase in HMAC time was minimal, it reflected the added security layers that
strengthened the data integrity and authenticity.

Entropy, a measure of randomness in key generation, remained consistent at 8.0, for both
Standard and Enhanced AES. This stability indicates that the ECDH integration preserved
the inherent randomness crucial for maintaining cryptographic strength, ensuring that the
enhanced version did not compromise the unpredictability of key generation. Notably, the
Enhanced AES showed a significant improvement in Differential Fault Analysis (DFA)
resistance, increasing from 2.0 Standard AES 3.0. This enhancement indicates that the
algorithm is better equipped to withstand DFA attacks, which exploit faults in the
encryption process to reveal secret keys, thereby rendering the Enhanced AES more
resilient to such sophisticated attacks.

Similarly, the Side-Channel Resistance showed a notable improvement in the Enhanced
AES, rising from 2.0 3.0. Side-channel attacks exploit information leaked during
encryption, such as the timing or power consumption, to infer secret keys. The increased
resistance in the enhanced version suggests that the ECDH integration fortified the
algorithm against these non-invasive attacks, reducing the risk of key leakage.
Cryptanalysis Resistance remained high and consistent at 8.0 for both versions,
indicating that the core strength of AES in resisting direct cryptanalytic attacks was
preserved in the enhanced version.
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Finally, the Brute-Force Resistance remained extraordinarily high for both the Standard
and Enhanced AES, with an estimated time of 3.7e+59 years to exhaustively search all
possible keys. This consistency indicates that the integration of ECDH did not
compromise the algorithm's resistance to brute-force attacks, thus ensuring long-term
security for encrypted data. In summary, although Enhanced AES with ECDH integration
introduces a slight increase in processing time, it offers significant improvements in
resistance to DFA and side-channel attacks, making it a more secure option for protecting
sensitive information (Gupta et al., 2021).

Conclusion

Based on the summary of the experiment conducted, the researcher concluded that:

1. Integrating ECDH with AES-256 encryption enhances security by providing a
secure method for key exchange and encryption, addressing AES's inherent
weaknesses in key management.

2. The findings confirmed that the enhanced AES algorithm, incorporating ECDH for
key exchange, maintained stable memory usage and demonstrated varied but
generally efficient performance in encryption and decryption times, with CPU
usage increasing as file sizes increased.

3. The performance analysis of the Enhanced AES algorithm revealed that both
encryption and decryption times, as well as memory usage, increased with file size,
whereas CPU usage initially decreased with file size before rising significantly for
larger files, indicating a complex relationship between file size and computational
resources.

4. While the Enhanced AES algorithm generally incurred higher execution time and
memory usage compared to the Standard AES algorithm, it demonstrated
improved resistance to side-channel attacks and differential fault analysis,
indicating a trade-off between performance and enhanced security capabilities,
making it well-suited for applications prioritizing robust security over resource
constraints.
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